
The ColourMaths` package

Introduction
The Colour Maths package was developed to solve a recurring problem among Mathematica users – how to

specify arbitrary algebraic transformations as elegantly and reliably as possible. Using this package a beginner user of

Mathematica can specify complicated algebraic transformations with little or no grasp of functions such as Collect,

Together, Part, etc. Furthermore, all the details of algebraic manipulations stay in the notebook for future reference and

there is a much reduced chance of making incorrect algebraic operations. Version 2.3 contains mechanisms to enable a

user to extend the scope of the package for his/her domain, and it contains a powerful mechanism to refer back to

particular formulae (e.g. theorems) earlier in the notebook.

à Getting started

ColourMaths is supplied as a ZIP file containing all the files required in their appropriate directories .. It is vital that this

directory structure is preserved. Copy the file either to the directory specified by $BaseDirectory, or

$UserBaseDirectory (as a general rule, use the former if you are the sole user of the computer, use the latter if several

people log on to your machine). Unzip the file ColourMaths.ZIP using a tool that preserves the directory structure and

handles long names correctly, e.g. PKZIP (R) Version 2.50, or WinZip (R).

As of version 2.20 of ColourMaths, the documentation is fully accessible via the Documentation Center.

Once the package is in place it can be read In the usual way:

<< ColourMaths`

ColourMaths will create a palette immediately it is read in. Using this palette you can specify algebraic manipulations

using colour. Simply select a whole subexpression and press one of the three coloured square buttons (red, green, blue)

at the top of the palette. If you selected an invalid subexpression you will receive a beep, otherwise you will produce a

coloured expression. It is possible to colour any number of subexpressions with the same or different colours. To

remove a colour simply make a selection which includes the colour you wish to remove and hit the black button (other

methods will be explained later).

Hint: To ensure that you select a whole subexpression click repeatedly on the expression you wish to select. Mathemat-

ica will select successively larger subexpressions until you reach the one you require.

The colour acts as a tag to enable arbitrary algebraic transformations to be specified. Using ColourMaths you should be

able to avoid re-typing expressions in almost all situations - avoiding the mistakes that this can produce. Your note-

books will also contain a full record of your work.

The palette also contains some of the colour manipulation functions described below. These paste at the end of the cell,

since that is usually whee they are required. To avoid creating a gigantic palette, not all functions or options can be

accessed in this way. For example, the RR function pastes on the assumption that you will apply it to a rule rather than a

function (although you can, of course, edit the pasted code to change it). In general there is no substitute for reading the

remaining sections of this manual!

à What is a coloured expression?

Although it is possible to colour text in a notebook using the Format menu, this colour is not transmitted to the Kernel

and is purely decorative. When you select a subexpression and press one of the colour buttons something quite different

Ò Ò Ò

The Super Widget Package 1

©2006 David Bailey

and is purely decorative. When you select a subexpression and press one of the colour buttons something quite different

occurs. The subexpression is surrounded by a function 'RedÒColour', 'GreenÒColour', or 'BlueÒColour' as appropriate.
You can see this function by examining the FullForm:

a + b + c êê FullForm

Plus@a, c, Red\[Breve]Colour@bDD

The colour package programs the FrontEnd so that it normally displays these colour functions by colouring their

arguments. Once you understand the structure of coloured expressions you can even manipulate them directly:

a + b + c ê. RedÒColour@x_D −> GreenÒColour@2 xD
a + c + 2 b

Because Mathematica does not 'know' anything about these functions except how to display them, they can be useful for

preventing unwanted evaluation. For example, consider the following expression:

π

EI π x − E−I π x
êê ExpToTrig

−
1

2
� π Csc@π xD

Perhaps you feel more comfortable with the sine function rather than the cosecant function (reciprocal sine). By using

colour we can prevent Mathematica performing this transformation:

π

�� π x − �−� π x
êê ExpToTrig

π

−�−� π x + �� π x

In larger algebraic calculations in which a long sequence of colour operations are applied this concept of preventing

evaluations can become vital.

à The colour manipulation functions

Once portions of an expression have been tagged they are usually manipulated using the colour manipulation functions

provided by ColourMaths. Because these functions are intended to be used frequently, and in combination, they are

given a short name as well as a more traditional Mathematica name. Those functions which remove the colour after

doing their work have a full name which ends in 'AndClear', and a short form which ends in the digit '1'. These functions

are known as 'non-colour preserving variants'.

Function name Abbreviation Action

RedOperation RR Restricts functionsêrules to red expressions

RedOperationAndClear RR1 Restricts functionsê rules to red
expressions, and removes colour

GreenOperation GG Restricts functionsêrules to green expressions

GreenOperationAndClear GG1 Restricts functionsê rules to green
expressions, and removes colour

BlueOperation BB Restricts functionsêrules to blue expressions

BlueOperationAndClear BB1 Restricts functionsê rules to blue
expressions, and removes colour

RedGrow Rgrow Expands the red colouration

2 The Super Widget Package

©2006 David Bailey

RedGrow Rgrow Expands the red colouration

to cover the containing expression

GreenGrow Ggrow Expands the green colouration

to cover the containing expression

BlueGrow Bgrow Expands the blue colouration

to cover the containing expression

CoalesceRed RC Coalesces red parts of an expression

CoalesceRedAndClear RC1 Coalesces red parts of

an expression, and removes colour

CoalesceGreen GC Coalesces green parts of an expression

CoalesceGreenAndClear GC1 Coalesces green parts of

an expression, and removes colour

CoalesceBlue BC Coalesces blue parts of an expression

CoalesceBlueAndClear BC1 Coalesces blue parts of an expression,

and removes colour

MoveRedOut Rout Moves red expression out one layer

MoveRedOutAndClear Rout1 Moves red expression out one layer,

and removes colour

MoveGreenOut Gout Moves green expression out one layer

MoveGreenOutAndClear Gout1 Moves green expression out one layer,

and removes colour

MoveBlueOut Bout Moves blue expression out one layer

MoveBlueOutAndClear Bout1 Moves blue expression out one layer,

and removes colour

MoveRedOver Rover Moves red expression over ==

and inequalities

MoveRedOverAndClear Rover1 Moves red expression over ==

and inequalities, and removes colour

MoveGreenOver Gover Moves green expression over ==

and inequalities

MoveGreenOverAndClear Gover1 Moves green expression over ==

and inequalities, and removes colour

MoveBlueOver Bover Moves blue expression over ==

and inequalities

MoveBlueOverAndClear Bover1 Moves blue expression over ==

and inequalities, and removes colour

MoveRedIn Rin Moves red expression inside another

MoveRedInAndClear Rin1 Moves red expression inside another

and removes the colour

MoveGreenIn Gin Moves green expression inside another

MoveGreenInAndClear Gin1 Moves green expression inside another

and removes the colour

MoveBlueIn Bin Moves blue expression inside another

MoveBlueInAndClear Bin1 Moves blue expression inside another

and removes the colour

MoveRedInsideRed RRin Moves red expression inside red one

MoveRedInsideRedAndClear RRin1 Moves red expression inside

The Super Widget Package 3

©2006 David Bailey

MoveRedInsideRedAndClear RRin1 Moves red expression inside

red one and remove the colour

MoveRedInsideGreen RGin Moves red expression inside green one

MoveRedInsideGreenAndClear RGin1 Moves red expression inside

green one and remove the colour

MoveRedInsideBlue RBin Moves red expression inside blue one

MoveRedInsideBlueAndClear RBin1 Moves red expression inside

blue one and remove the colour

MoveGreenInsideRed GRin Moves green expression inside red one

MoveGreenInsideRedAndClear GRin1 Moves green expression

inside red one and remove the colour

MoveGreenInsideGreen GGin Moves green expression inside green one

MoveGreenInsideGreenAndClear GGin1 Moves green expression inside

green one and remove the colour

MoveGreenInsideBlue GBin Moves green expression inside

blue one and remove the colour

MoveGreenInsideBlueAndClear GBin1 Moves green expression inside blue one

MoveBlueInsideRed BRin Moves blue expression inside red one

MoveBlueInsideRedAndClear BRin1 Moves blue expression inside

red one and remove the colour

MoveBlueInsideGreen BGin Moves blue expression inside green one

MoveBlueInsideGreenAndClear BGin1 Moves blue expression inside

green one and remove the colour

MoveBlueInsideBlue BBin Moves blue expression inside blue one

MoveBlueInsideBlueAndClear BBin1 Moves blue expression inside

blue one and remove the colour

RedAdd Radd Adds expr -RedÒColour@exprD
to the red expression

GreenAdd Gadd Adds expr -GreenÒColour@exprD
to the green expression

BlueAdd Badd Adds expr -BlueÒColour@exprD
to the blue expression

RedMultiply Rmpy Multiplies the red expression

by expr RedÒColourAexpr-1E

GreenMultiply Gmpy Multiplies the green expression

by expr GreeAÒColourAexpr-1E

BlueMultiply Bmpy Multiplies the blue expression

by expr BlueÒColourAexpr-1E

ColourSort CS CS@ f D returns a function that
sorts coloured parameters of f . CS@D
returns a function that colour sorts lists.

ColourSortAndClear CS1 CS1 @ f D and CS1@D operate as
CS@ f D and CS@D except that all colour is
removed after the operation completes.

4 The Super Widget Package

©2006 David Bailey

The following functions are used to manipulate inert sums, integrals, products, etc. and to define and use assertions.

Many of them are frequently used inside colour functions such as RR1 to restrict their action.

Function name No of arguments Action

DoIntegrals 0 A function that converts

inactive integrals into the form

recognised byMathematica.

DoSummations 0 A function that converts

inactive summations into the

form recognised byMathematica.

SwapOperations 0 A function that swaps nested

inert summations ê integrals.

ByParts 0 or 1 xxxx

ChangeÒVariables 2 Returns a function

that performs a variable

substitution on an inert integral.

DoSpecialFunctions 0 Returns a function that causes the inert

forms of special functions to be replaced

by theMathematica equivalent.

à Selective application of rules and functions

Using colour it is possible to restrict the application of a rule, rule set, or function to just the coloured parts of an

expression. This is done using the functions RR, GG, BB or their non colour preserving variants RR1, GG1, BB1. Here

is an example in which the built-in function TrigToExp is applied selectively to the red subexpression:

Cos@a xD + Cos@b xD + Cos@c xD êê RR@TrigToExpD

Cos@a xD + Cos@c xD +
1

2
�−� b x +

1

2
�� b x

Here s an example using a rule. Note carefully that RR always returns a pure function whatever its argument(s), and so

should be preceded by the '//' operator:

Cos@a xD + Cos@b xD + Cos@c xD êê RR@x −> yD
Cos@a xD + Cos@c xD + Cos@b yD

These functions can take multiple arguments, which are used in turn, so the previous two transformations could be

combined thus:

Cos@a xD + Cos@b xD + Cos@c xD êê RR1@TrigToExp, x −> yD
1

2
�−� b y +

1

2
�� b y + Cos@a xD + Cos@c xD

Since we have presumably finished with the red colour at this point, we have used the non colour preserving variant

RR1.

Notice that there is no reason why the function or rule need represent a mathematical identity, so these functions can be

used to perform many kinds of operations. As just one example, suppose we are manipulating special functions and

decide to use a private notation except when Mathematica evaluation is required. We might define a rule set such as this:

The Super Widget Package 5

©2006 David Bailey

myrule := 8Γ@x_D −> Gamma@xD, ζ@z_D −> Zeta@zD<
Using colour we could apply this rule set exactly where required:

Γ@aD Γ@4D
Γ@cD êê RR1@myruleD

6 Γ@aD
Γ@cD

à Collecting coloured expressions

Consider the following expression:

a2 + b2 − c2 − d2

Clearly, from a mathematical point of view a2 - d2 is a subexpression. However, because Mathematica has not printed

these parts of the expression together, there is no way to select, and hence colour this subexpression. The solution is to

use the RC (RedCoalesce), GC, and BC functions. These functions will force terms together thus:

a2 + b2 − c2 − d2 êê RC

b2 − c2 + Ia2 − d2M

Typically these functions are combined with one of the other colour manipulation functions, for example:

a2 + b2 − c2 − d2 êê RC êê RR1@FactorD
b2 − c2 + Ha − dL Ha + dL

Without coalescing the two red expressions Factor gets applied to them separately and achieves nothing.

a2 + b2 − c2 − d2 êê RR1@FactorD
a2 + b2 − c2 − d2

Although non colour preserving versions of these functions exist, they are not often used because in many instances

(such as the above) without the colour the expression collapses to its original form.

Rather than merge two coloured expressions, it is sometimes useful to expand a coloured region to cover the immediate

containing expression. This can be done with the functions Rgrow, Ggrow, and Bgrow. Possibly the most application of

these functions is to colour negative components of additions. For example:

a − b êê FullForm

Plus@a, Times@−1, Red\[Breve]Colour@bDDD

a − b êê Rgrow êê FullForm

Plus@a, Red\[Breve]Colour@Times@−1, bDDD

Without this device there would be no way to pick out the subexpression (-b) as opposed to the subexpression b.

à Moving expressions 'out'

à Moving expressions 'in'

Although it is common to talk about moving expressions inside others, the concept can be rather more ambiguous than

the reverse operation. Colour Math supports several such operations to deal with the different cases. You can always use

6 The Super Widget Package

©2006 David Bailey

the reverse operation. Colour Math supports several such operations to deal with the different cases. You can always use

the most general form, which will work in all cases, if desired.

The simplest case is where the 'move in' operation is totally unambiguous, for example:

a b êê Rin

a b

Ha + bL c d êê Rin1

Ha c + b cL d

An intermediate case exists in which it suffices to mark two subexpressions with the same colour to specify a 'move in'

operation. For example:

Log@aD + Log@bD + Log@cD + Log@dD êê RRin1

Log@aD + Log@cD + Log@b dD

In the most general case it is necessary to use two distinct colours:

a + b Hc + dL e + f êê RBin1

Hc + dL HHa + bL e + Ha + bL fL

Here are a few more examples:

s ‚
i=0

∞

f@iD êê Rin

‚
i=0

∞

f@iD s

a b Ic2 + d2M êê Rin1

a Ib c2 + b d2M

à Moving expressions 'over'

The functions Rover, Gover, and Bover move subexpressions to the other side of equalities and inequalities. The precise

meaning depends on the context. Note that it is easy to do invalid things with inequalities - such as dividing both sides

by something negative - so it is vital not to use these functions blindly. The manipulation of equalities is much safer.

Here are some examples:

x2 + y2 − a == 0 êê Bover

x2 + y2 	 a

Hx + yL
x − y

== p êê Rover êê Rin1

x + y 	 p Hx − yL

The Super Widget Package 7

©2006 David Bailey

a b + b c d == e êê Gover1

a + c d 	
e

b

à Multiply top and bottom by ...

Frequently it is useful to manipulate an expression by adding and subtracting the same term, or by multiplying and

dividing the same term. The result is unchanged of course, but the aim is to combine this maneuver with other opera-

tions to achieve something useful. You will encounter two problems if you try to perform such operations with 'raw'

Mathematica:

• You may want to perform the manipulation deep inside an expression, not on the top level.

• Until you have performed some further operations Mathematica is quite likely to 'simplify' your expression back to its

original form.

To solve these problems a set of six operations are supplied which operate as in the following example:

f@a, bD êê Rmpy@2D êê Gadd@nD

fA−n + Ha + nL, 2 b

2
E

The desired operation is performed inside the coloured expression, and the inverse operation is applied outside the

colour (so that the value of the expression, disregarding colour, remains the same). Since the result would at once

collapse if the colour were removed before other transformations were applied, no non colour preserving version of

these functions is supplied.

Here is a more interesting example:

I1 + q + q2 + q3M I1 + q + q2M H1 + qL êê Rmpy@1 − qD êê Gmpy@1 − qD êê Bmpy@1 − qD êê
RR1@ExpandD êê GG1@ExpandD êê BB1@ExpandD

Notice how the coloured product or sum is ready for another colour manipulation operation, in this case Expand.

à Extracting expressions to another notebook

The philosophy of using coloured expressions is perform as much as possible without re-writing or pasting operations,

which do not leave any record in the notebook. However, sometimes it is convenient to extract part of an expression and

manipulate it on its own in a separate notebook, pasting the result back in at the end of the process. If you do this you

must accept that your notebook will not contain a full record of your manipulations.

To extract a subexpression first colour it in the usual way and then press the large 'X' on the palette of the appropriate

colour. Note that there are no functions corresponding to these palette items. A new notebook will be created with the

subexpression pasted into it. This notebook will also contain a button marked 'Return' which you should press to return

the last result that you produce. Do not press this button until you have evaluated an expression of some sort.

When you press the 'Return' button the temporary notebook will close and the result will be pasted back into your full

expression.

à Functions with many parameters

Certain mathematical functions, such as the (generalised) hypergeometric functions and the MeijerG function depend on

many parameters, which are arranged in lists. Consider for example the function HypergeometricPFQ[{3/2,2},{1,2},z].

Here we have two lists of parameters, and it is a basic fact – obvious from the definition of these functions – that the

order of parameters within each list is irrelevant. Suppose now that you wish to apply a transformation rule to a hypergeo-

8 The Super Widget Package

©2006 David Bailey

order of parameters within each list is irrelevant. Suppose now that you wish to apply a transformation rule to a hypergeo-

metric function, but the order of the parameters in the lists does not match those in the rule. Because Mathematica

applies transformation rules in an essentially blind way it is necessary to sort the order of parameters before applying

such a rule (Alternatively you could define many rules to cover each parameter ordering, but this quickly becomes

unmanageable).

To handle such problems using colour, a set of functions are supplied to sort the order of parameters in lists by colour.

Lists are sorted into the order red, then green, then blue, then uncoloured expressions. For example:

F@8a, b, 1, 2<, 8d, e, f<, zD êê CS@D
F@82, b, a, 1<, 8d, e, f<, zD

As usual, the sorting operation can be followed by removing the colour. In this case all three colours are removed:

F@8a, b, 1, 2<, 8d, e, f<, zD êê CS1@D
F@82, b, a, 1<, 8d, e, f<, zD

Hint: If you wish to manipulate special functions such as hypergeometric functions you may find it useful to use a

notation, such as that above, which is not recognised by Mathematica. This prevents the system applying spurious

'simplifications' such as converting hypergeometric functions to Bessel functions. Later, when required, the rule F-

>HypergeometricPFQ will switch to standard Mathematica notation if desired.

By default these functions sort lists only. However, sometimes it is more useful to apply these functions in a more

general context by specifying the head of the term to be sorted. For example:

g@a, b, cD êê CS1@gD
g@b, a, cD

à A word of caution

As you probably realise, Mathematica does not automatically expand terms such as x2 . The reason for this is that if

x is negative or complex this is not valid. Many mathematical operations are only valid under certain conditions. Since

colour manipulations are designed for manual use, the system 'assumes' that you know what you are doing. Of course,

many of the traditional ways of manipulating Mathematica expressions using Take, Part, etc. do not make these checks

either. Here are some of the issues to watch for when using colour transformations:

• Operations involving exponents are performed under the same assumptions as are used by PowerExpand.

• Likewise, operations involving logarithms uses the transformation Log[a bDóLog[a] Log[b]. This can be invalid if

complex numbers are involved.

• If you select part of an expression by dragging the mouse (as opposed to repeated clicking) it is possible to select parts

of an expression which appear to be legal sub-expressions, but which are not. Here is a simple example:

a + b −c + d êê FullForm

Plus@a, d, Times@b, Red\[Breve]Colour@Times@−1, cDDDD

Here the legal expression, -c, was extracted from the outer expression in an illegal way - essentially because drag

selection can easily be used to select invalid sub-expressions. The best way to avoid this problem is to select using

repeated clicks (at least where confusion might exist) and use Rgrow etc. to pickup a minus sign:

a + b − c + d êê Rgrow êê FullForm

Plus@a, b, d, Red\[Breve]Colour@Times@−1, cDDD

The Super Widget Package 9

©2006 David Bailey

• Care should be taken when moving a multiplicative factor to the other side of an inequality. Negative multipliers can

give incorrect results.

à Adding your own extensions

Because the colour functions are represented in the Kernel as functions with no definition, it is easy to create rules

which use colour to perform an operation of your own. For example, suppose you needed to perform 2-term series

expansions on subexpressions regularly. You could try something like:

fAH1 + xL3, Exp@xDE êê RR1@u_ :> Normal@Series@u, 8x, 0, 2<DDD

fAH1 + xL3, 1 + x +
x2

2
E

However, this is very clumsy to use on a regular basis, so an alternative is to define a function to operate on the colour

directly:

RedExpand@u_D := u ê. RedÒColour@s_D :> Normal@Series@s, 8x, 0, 2<DD
Now you can use this function directly whenever it is needed simply by colouring one or more subexpressions red:

fAH1 + xL3, Exp@xDE êê RedExpand

fAH1 + xL3, 1 + x +
x2

2
E

à Defining inert mathematical operations

Consider the following summation:

‚
n=1

1000

an

If you give such a sum to Mathematica, it will 'evaluate' it - producing an expression with 1000 terms, which is almost

certainly not what is required! Summations with infinite or variable limits will either evaluate or remain unevaluated,

however there is no built-in way to represent a sum without letting the system take a shot at evaluating it. Clearly, there

are many cases, such as when one is trying to prove results about a sum, where one does not want this evaluation to even

be attempted. The same is true for definite integrals, products, and limits. To facilitate the manipulation of these objects,

the ColourMaths package contains inert variants of these constructs. These can be created by selecting the expression in

question and pressing the "Inert" button on the palette.

Active head Inert head

Integrate IntegrateÒInert
Sum SumÒInert

Product ProductÒInert
Limit LimitÒInert

All passive integrals and sums are assumed to be definite, indefinite integrals are converted to definite intert integrals by

the "Inert" button. An indefinite operation is specified by using a variable as the upper limit.

Inert constructs have a shaded background to distinguish them from normal operations. Where inert operations are

nested inside other inert operations, this shading is made deeper.

10 The Super Widget Package

©2006 David Bailey

nested inside other inert operations, this shading is made deeper.

Clearly it would be possible to add further inert operations to this list, such as differentiation. As we will see in the next

section, these inert operations allow us to represent theorems involving sums, integrals etc. (such as the binomial

theorem) whereas if the sum in the binomial theorem were represented using Sum, Mathematica would simply apply the

binomial theorem and evaluate the sum!

Although it would be possible to represent these objects using HoldForm (the invisible form of Hold), in practice this is

not very convenient as it suppresses other evaluations which may well be required. For example:

HoldForm@Sum@a@n, 8D, 8n, 0, 1000<DD ê. a@p_, q_D :> 2q b@pD ê; EvenQ@qD

‚
n=0

1000

28 b@nD

Compare this with the same operations performed with an inert sum and without HoldForm:

‚
n=0

1000

a@n, 8D ê. a@p_, q_D :> 2q b@pD ê; EvenQ@qD

‚
n=0

1000

256 b@nD

Somewhat curiously, Sum and Product have attribute HoldAll, whereas Integrate and Limit do not. None of the passive

forms have been defined to hold their arguments - it is assumed that their dummy arguments do not have definitions

outside of the construct. Since we often want to perform extensive manipulations of summations it is convenient to

allow evaluation to take place.

In general, nested sums, and integrals can have the order of operations reversed subject to certain conditions regarding

uniform convergence. A function SwapOperations is supplied to achieve this on the inert forms:

‚
n=0

1

‡
0

1

fn@xD �x êê SwapOperations

‡
0

1

‚
n=0

1

fn@xD
x

‡
0

1

‚
n=0

1

fn@xD �x êê SwapOperations

‚
n=0

1

‡
0

1

fn@xD
x

Obviously this is a purely mechanical process, it could not even begin to check for uniform convergence, since in

general it would not 'know' the meaning of many of the functions in use. The user must add this to his derivation if

required.

Two common hand manipulations of integrals is to change the variable of integration or to perform an integration by

parts. Here we see a variable substitution with a subsequent simplification of the integrand:

‡
0

1H1 − tL−1+q t−1+p �t êê Iv@s −> t ê H1 − tL, tD

‡
0

∞ I s

1+s
M−1+p I1 −

s

1+s
M−1+q

s

H1+sL J1− s

1+s
N2

+
1

1−
s

1+s

s

The Super Widget Package 11

©2006 David Bailey

‡
0

∞ I s

1+s
M−1+p I1 −

s

1+s
M−1+q

s

H1+sL J1− s

1+s
N2

+
1

1−
s

1+s

�s êê Simplify

‡
0

∞ I 1

1+s
Mq I s

1+s
Mp

s

s

The integration by parts operation assumes that the part to be integrated is picked out in red:

‡
a

b

xn Sin@xD �x êê ByParts

an Cos@aD − bn Cos@bD + ‡
a

b

n x−1+n Cos@xD
x

One problem with inert mathematical operations such as Integral is that it is impossible to define differentiation with

respect to a parameter in a consistent way. Here is a simple definition assuming the limits are constants:

IntegrateÒInert ê: D@IntegrateÒInert@F_, 8x_, a_, b_<D, k_D :=

IntegrateÒInert@D@F, kD, 8x, a, b<D
Using this definition, we seem to be able to differentiate inert integrals:

DB‡
0

π

2
1 − k2 Sin@xD2 �x, kF

−‡
0

π

2
k Sin@xD2

1 − k2 Sin@xD2

x

However, if the inert integral is embedded inside a larger expression, things go wrong. It would seem that D uses the

chain rule a little too eagerly.

DBk ‡
0

π

2
1 − k2 Sin@xD2 �x, kF

‡
0

π

2

1 − k2 Sin@xD2
x −
k2 π Sin@xD2

2 1 − k2 Sin@xD2

For this reason, the ColourMaths package supplies the Diff operation which fixes this problem.

DiffBk ‡
0

π

2
1 − k2 Sin@xD2 �x, kF

−k ‡
0

π

2
k Sin@xD2

1 − k2 Sin@xD2

x + ‡

0

π

2

1 − k2 Sin@xD2
x

The ColourMaths package also contains inert forms for several common Special functions and related mathematical

objects. In most cases these also have rules to display them in a traditional form from StandardForm. These functions do

not display well in TraditionalForm, but by switching them to the active Mathematica equivalent it is possible to obtain

an expression suitable for display in TraditionalForm.

à The Adjust button – Visual algebra

Most of us are familiar with doing algebra in a linear fashion. The 'point and click' culture has yet to make much impact

12 The Super Widget Package

©2006 David Bailey

Most of us are familiar with doing algebra in a linear fashion. The 'point and click' culture has yet to make much impact

on this process. However, The Adjust button offers a step in that direction! Simply select the part of an expression to be

manipulated, and press the Adjust button to see a menu of possible manipulations:

f@Ha + bL Ha^2 + 2 a b + b^2LD
Note that I have used the shading to represent the selection – it isn't part of the expression. Here is what the system

offers at this point:

Accepting one or other of the two choices will not simply alter the expression (which would leave no indication of how

the transformation was produced). Instead, it annotates the expression, so that the desired result is obtained by

evaluation:

fAHa + bL Ia2 + 2 a b + b2ME êê RedÒColourAdjust@ApartÒAdjustD
fAa3 + 3 a2 b + 3 a b2 + b3E

This illustrates the concept, but to obtain really interesting results, we need to supply some transformations that are

specific to our area of interest. For example:

DefineÒAdjustmentBBinomialÒTheorem,

H1 + x_Lp_
 ‚
k=0

∞

xk Binomial@p, kD, "Binomial theorem"F;

DefineÒAdjustment@BetaÒFunctionÒDefinition,
IntegrateÒInert@t_^Hp_ − 1L ∗ H1 − t_L^Hq_ − 1L, 8t_, 0, 1<D
 Β@p, qD,
"Beta function definition"D;

The DefineÒAdjustment function takes an arbitrary transformation name (analogous to ApartÒAdjust above), which must
be unique, a transformation rule, and any additional comments. The last argument can be omitted.

Here is a typical use of these definitions. Select the shaded part of the expression, and press the Adjust button. You

should see the following::

‡
0

1H1 − tL−1−a+c t−1+a H1 − t zL−b �t

The Super Widget Package 13

©2006 David Bailey

This produces the following. As you can see, it is quite clear what step was chosen, and it could be re-executed at a later

date provided the above call to DefineÒAdjustment had been entered.

However, there is a complication here. The summation in the binomial expansion requires a dummy index – a problem

which is very common in really useful transformations. It is for this reason that the dummy index, k, was coloured with

the 'flag colour' when it was entered. The idea is that you fill in a suitable index to use thus:

‡
0

1H1 − tL−1−a+c t−1+a H1 − t zL−b �t êê RedÒColourAdjust@BinomialÒTheorem, k → �D

‡
0

1H1 − tL−1−a+c t−1+a H1 − t zL−b �t êê RedÒColourAdjust@BinomialÒTheorem, k → mD

‡
0

1H1 − tL−1−a+c t−1+a ‚
m=0

∞

H−t zLm Binomial@−b, mD
t

Now we swap the integral and sum (deferring any convergence checks until later), and move things about.

‡
0

1H1 − tL−1−a+c t−1+a ‚
m=0

∞

H−t zLm Binomial@−b, mD �t êê SwapOperations êê Rout1

‚
m=0

∞

Binomial@−b, mD ‡
0

1H1 − tL−1−a+c t−1+a H−t zLm
t

Now a few simple rearrangements leave the expression with a recognisable beta function integral

‚
m=0

∞

Binomial@−b, mD ‡
0

1H1 − tL−1−a+c t−1+a H−t zLm �t êê Gmpy@H−zL−mD

‚
m=0

∞

Binomial@−b, mD ‡
0

1H1 − tL−1−a+c t−1+a H−zLm HH−zL−m H−t zLmL
t

‚
m=0

∞

Binomial@−b, mD ‡
0

1H1 − tL−1−a+c t−1+a H−zLm HH−zL−m H−t zLmL �t êê Rout1 êê

GG1@PowerExpandD

‚
m=0

∞

Binomial@−b, mD ‡
0

1H1 − tL−1−a+c t−1+a+m H−zLm �t êê Rout1

14 The Super Widget Package

©2006 David Bailey

‚
m=0

∞

H−zLm Binomial@−b, mD ‡
0

1H1 − tL−1−a+c t−1+a+m �t êê

RedÒColourAdjust@BetaÒFunctionÒDefinitionD

‚
m=0

∞

H−zLm Binomial@−b, mD Β@a + m, −a + cD

à Highlight Formulae

Most serious mathematical derivations number certain formulae so that these can be referred to at subsequent points in

the text. While Mathematica does permit equation numbering, it supplies no way to actually access an equation by

number. Although it would probably be possible to create such a mechanism, another problem associated with relying

on equation numbering, is that inserting an extra numbered equation into a notebook will cause the other equation

numbers to change.

The ColourMaths package lets you highlight any cell and give it a name to identify it further down the notebook. This is

done by clicking anywhere in the cell, and pressing the “Highlight” button on the palette. For example:

"Atomic_hydrogen_ground_state"

EÒHydrogen �
�4 me mp

32 π2 —2 Ime + mpM ε0
2

Once this highlight formula has been named in this way, it can be refereed to thus:

GetÒHighlightÒFormula@"Atomic_hydrogen_ground_state"D

EÒHydrogen 	

�4 me mp

32 π2 —2 Ime + mpM ε0
2

Using the following extra definitions (which might typically be included in the initialisation section of a notebook), we

can access the formula in a more interesting way:

physicalConstants = 9
me −> 9.10938215`*^-31,

mp −> 1.672621637`*^-27,

ε0 −> 8.85419*^-12,

� −> 1.6021766*^-19,

— −> 1.0545717*^-34=;
GetÒHighlightÒFormula@"Atomic_hydrogen_ground_state"D ê. physicalConstants

EÒHydrogen 	 2.17868 × 10−18

If you prefer to number your equations, you can always give them a numerical name, e.g. “23” or “(23)” or “2.1.7” .

Highlight formulae can also be accessed from a menu using PickÒHighlightÒFormula:

The Super Widget Package 15

©2006 David Bailey

PickÒHighlightÒFormula@D

EÒHydrogen 	

�4 me mp

32 π2 —2 Ime + mpM ε0
2

Certain other functions, such as LeftÒSide and RightÒSide can also take the string name of a suitable formula. For
example:

RightÒSide@"Atomic_hydrogen_ground_state"D
�4 me mp

32 π2 —2 Ime + mpM ε0
2

Note that these functions access the highlight formulae from the notebook,not from the kernel. This means that provided

the ColourMaths package is loaded, it is not necessary to re-execute a notebook to pick up these formulae.

à Future enhancements

Clearly the concept of using Mathematica in this way could be expanded in many directions, with specialised sets of

transformation rules, etc being added as required.

16 The Super Widget Package

©2006 David Bailey

