
The ColourMaths` package 

Introduction
The  Colour  Maths  package  was  developed  to  solve  a  recurring  problem  among  Mathematica  users  –  how  to

specify arbitrary algebraic  transformations as elegantly and reliably as  possible.  Using this package a beginner user of

Mathematica   can  specify  complicated  algebraic  transformations  with  little  or  no  grasp  of  functions  such  as  Collect,

Together, Part, etc. Furthermore, all the details of algebraic manipulations stay in the notebook for future reference and

there is a much reduced chance of making incorrect algebraic operations. Version 2.3 contains mechanisms to enable a

user  to  extend  the  scope  of  the  package  for  his/her  domain,  and  it  contains  a  powerful  mechanism to  refer  back  to

particular formulae (e.g. theorems) earlier in the notebook.

à Getting started

ColourMaths is supplied as a ZIP file containing all the files required in their appropriate directories .. It is vital that this

directory  structure  is  preserved.  Copy  the  file  either  to  the  directory  specified  by  $BaseDirectory,  or

$UserBaseDirectory (as a general rule, use the former if you are the sole user of the computer, use the latter if several

people log on to your machine). Unzip the file ColourMaths.ZIP using a tool that preserves the directory structure and

handles long names correctly, e.g. PKZIP (R)  Version 2.50, or WinZip (R). 

As of version 2.20 of ColourMaths, the documentation is fully accessible via the Documentation Center.

Once the package is in place it can be read In the usual way:

<< ColourMaths`

ColourMaths will create  a palette  immediately it  is read  in. Using this palette  you can specify algebraic manipulations

using colour. Simply select a whole subexpression and press one of the three coloured square buttons (red, green, blue)

at the top of the palette. If you selected an invalid subexpression you will receive a beep, otherwise you will produce a

coloured  expression.  It  is  possible  to  colour  any  number  of  subexpressions  with  the  same  or  different  colours.  To

remove a colour simply make a selection which includes the colour you wish to remove and hit the black button (other

methods will be explained later).

Hint: To ensure that you select a whole subexpression click repeatedly on the expression you wish to select. Mathemat-

ica will select successively larger subexpressions until you reach the one you require.

The colour acts as a tag to enable arbitrary algebraic transformations to be specified. Using ColourMaths you should be

able  to  avoid  re-typing expressions  in  almost  all  situations  -  avoiding  the  mistakes that  this  can  produce.  Your  note-

books will also contain a full record of your work.

The palette also contains some of the colour manipulation functions described below. These paste at the end of the cell,

since  that  is  usually whee  they are  required.  To  avoid  creating  a  gigantic  palette,  not  all  functions or  options  can  be

accessed in this way. For example, the RR function pastes on the assumption that you will apply it to a rule rather than a

function (although you can, of course, edit the pasted code to change it). In general there is no substitute for reading the

remaining sections of this manual!

à What is a coloured expression?

Although it is possible to colour text in a notebook using the Format menu, this colour is not transmitted to the Kernel

and is purely decorative. When you select a subexpression and press one of the colour buttons something quite different
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and is purely decorative. When you select a subexpression and press one of the colour buttons something quite different

occurs.  The  subexpression  is  surrounded  by  a  function  'RedÒColour',  'GreenÒColour',  or  'BlueÒColour'  as  appropriate.
You can see this function by examining the FullForm:

a + b + c êê FullForm

Plus@a, c, Red\[Breve]Colour@bDD

The  colour  package  programs  the  FrontEnd  so  that  it  normally  displays  these  colour  functions  by  colouring  their

arguments. Once you understand the structure of coloured expressions you can even manipulate them directly:

a + b + c ê. RedÒColour@x_D −> GreenÒColour@2 xD
a + c + 2 b

Because Mathematica does not 'know' anything about these functions except how to display them, they can be useful for

preventing unwanted evaluation. For example, consider the following expression:

π

EI π x − E−I π x
êê ExpToTrig

−
1

2
� π Csc@π xD

Perhaps you feel more comfortable with the sine function rather than the cosecant function (reciprocal  sine).  By using

colour we can prevent Mathematica performing this transformation:

π

�� π x − �−� π x
êê ExpToTrig

π

−�−� π x + �� π x

In  larger  algebraic  calculations  in  which a  long  sequence  of  colour  operations  are  applied  this  concept  of  preventing

evaluations can become vital.

à The colour manipulation functions

Once portions of an expression have been tagged they are usually manipulated using the colour manipulation functions

provided  by   ColourMaths.  Because  these  functions are  intended  to  be  used  frequently,  and  in  combination,  they are

given  a  short  name as  well  as  a  more  traditional  Mathematica  name.  Those  functions  which remove  the  colour  after

doing their work have a full name which ends in 'AndClear', and a short form which ends in the digit '1'. These functions

are known as 'non-colour preserving variants'.

Function name Abbreviation Action

RedOperation RR Restricts functionsêrules to red expressions

RedOperationAndClear RR1 Restricts functionsê rules to red
expressions, and removes colour

GreenOperation GG Restricts functionsêrules to green expressions

GreenOperationAndClear GG1 Restricts functionsê rules to green
expressions, and removes colour

BlueOperation BB Restricts functionsêrules to blue expressions

BlueOperationAndClear BB1 Restricts functionsê rules to blue
expressions, and removes colour

RedGrow Rgrow Expands the red colouration
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RedGrow Rgrow Expands the red colouration

to cover the containing expression

GreenGrow Ggrow Expands the green colouration

to cover the containing expression

BlueGrow Bgrow Expands the blue colouration

to cover the containing expression

CoalesceRed RC Coalesces red parts of an expression

CoalesceRedAndClear RC1 Coalesces red parts of

an expression, and removes colour

CoalesceGreen GC Coalesces green parts of an expression

CoalesceGreenAndClear GC1 Coalesces green parts of

an expression, and removes colour

CoalesceBlue BC Coalesces blue parts of an expression

CoalesceBlueAndClear BC1 Coalesces blue parts of an expression,

and removes colour

MoveRedOut Rout Moves red expression out one layer

MoveRedOutAndClear Rout1 Moves red expression out one layer,

and removes colour

MoveGreenOut Gout Moves green expression out one layer

MoveGreenOutAndClear Gout1 Moves green expression out one layer,

and removes colour

MoveBlueOut Bout Moves blue expression out one layer

MoveBlueOutAndClear Bout1 Moves blue expression out one layer,

and removes colour

MoveRedOver Rover Moves red expression over ==

and inequalities

MoveRedOverAndClear Rover1 Moves red expression over ==

and inequalities, and removes colour

MoveGreenOver Gover Moves green expression over ==

and inequalities

MoveGreenOverAndClear Gover1 Moves green expression over ==

and inequalities, and removes colour

MoveBlueOver Bover Moves blue expression over ==

and inequalities

MoveBlueOverAndClear Bover1 Moves blue expression over ==

and inequalities, and removes colour

MoveRedIn Rin Moves red expression inside another

MoveRedInAndClear Rin1 Moves red expression inside another

and removes the colour

MoveGreenIn Gin Moves green expression inside another

MoveGreenInAndClear Gin1 Moves green expression inside another

and removes the colour

MoveBlueIn Bin Moves blue expression inside another

MoveBlueInAndClear Bin1 Moves blue expression inside another

and removes the colour

MoveRedInsideRed RRin Moves red expression inside red one

MoveRedInsideRedAndClear RRin1 Moves red expression inside
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MoveRedInsideRedAndClear RRin1 Moves red expression inside

red one and remove the colour

MoveRedInsideGreen RGin Moves red expression inside green one

MoveRedInsideGreenAndClear RGin1 Moves red expression inside

green one and remove the colour

MoveRedInsideBlue RBin Moves red expression inside blue one

MoveRedInsideBlueAndClear RBin1 Moves red expression inside

blue one and remove the colour

MoveGreenInsideRed GRin Moves green expression inside red one

MoveGreenInsideRedAndClear GRin1 Moves green expression

inside red one and remove the colour

MoveGreenInsideGreen GGin Moves green expression inside green one

MoveGreenInsideGreenAndClear GGin1 Moves green expression inside

green one and remove the colour

MoveGreenInsideBlue GBin Moves green expression inside

blue one and remove the colour

MoveGreenInsideBlueAndClear GBin1 Moves green expression inside blue one

MoveBlueInsideRed BRin Moves blue expression inside red one

MoveBlueInsideRedAndClear BRin1 Moves blue expression inside

red one and remove the colour

MoveBlueInsideGreen BGin Moves blue expression inside green one

MoveBlueInsideGreenAndClear BGin1 Moves blue expression inside

green one and remove the colour

MoveBlueInsideBlue BBin Moves blue expression inside blue one

MoveBlueInsideBlueAndClear BBin1 Moves blue expression inside

blue one and remove the colour

RedAdd Radd Adds expr -RedÒColour@exprD
to the red expression

GreenAdd Gadd Adds expr -GreenÒColour@exprD
to the green expression

BlueAdd Badd Adds expr -BlueÒColour@exprD
to the blue expression

RedMultiply Rmpy Multiplies the red expression

by expr RedÒColourAexpr-1E

GreenMultiply Gmpy Multiplies the green expression

by expr GreeAÒColourAexpr-1E

BlueMultiply Bmpy Multiplies the blue expression

by expr BlueÒColourAexpr-1E

ColourSort CS CS@ f D returns a function that
sorts coloured parameters of f . CS@D
returns a function that colour sorts lists.

ColourSortAndClear CS1 CS1 @ f D and CS1@D operate as
CS@ f D and CS@D except that all colour is
removed after the operation completes.
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The  following functions  are  used  to  manipulate  inert  sums,  integrals,  products,  etc.  and  to  define  and  use  assertions.

Many of them are frequently used inside colour functions such as RR1 to restrict their action.

Function name No of arguments Action

DoIntegrals 0 A function that converts

inactive integrals into the form

recognised byMathematica.

DoSummations 0 A function that converts

inactive summations into the

form recognised byMathematica.

SwapOperations 0 A function that swaps nested

inert summations ê integrals.

ByParts 0 or 1 xxxx

ChangeÒVariables 2 Returns a function

that performs a variable

substitution on an inert integral.

DoSpecialFunctions 0 Returns a function that causes the inert

forms of special functions to be replaced

by theMathematica equivalent.

à Selective application of rules and functions

Using  colour  it  is  possible  to  restrict  the  application  of  a  rule,  rule  set,  or  function  to  just  the  coloured  parts  of  an

expression. This is done using the functions RR, GG, BB or their non colour preserving variants RR1, GG1, BB1. Here

is an example in which the built-in function TrigToExp is applied selectively to the red subexpression:

Cos@a xD + Cos@b xD + Cos@c xD êê RR@TrigToExpD

Cos@a xD + Cos@c xD +
1

2
�−� b x +

1

2
�� b x

Here s an example using a rule. Note carefully that RR always returns a pure function whatever its argument(s), and so

should be preceded by the '//' operator:

Cos@a xD + Cos@b xD + Cos@c xD êê RR@x −> yD
Cos@a xD + Cos@c xD + Cos@b yD

These  functions  can  take  multiple  arguments,  which  are  used  in  turn,  so  the  previous  two  transformations  could  be

combined thus:

Cos@a xD + Cos@b xD + Cos@c xD êê RR1@TrigToExp, x −> yD
1

2
�−� b y +

1

2
�� b y + Cos@a xD + Cos@c xD

Since  we have presumably finished with the  red  colour  at  this  point,  we have used  the  non colour  preserving  variant

RR1.

Notice that there is no reason why the function or rule need represent a mathematical identity, so these functions can be

used  to  perform  many kinds  of  operations.  As  just  one  example,  suppose  we  are  manipulating special  functions  and

decide to use a private notation except when Mathematica evaluation is required. We might define a rule set such as this:
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myrule := 8Γ@x_D −> Gamma@xD, ζ@z_D −> Zeta@zD<
Using colour we could apply this rule set exactly where required:

Γ@aD Γ@4D
Γ@cD êê RR1@myruleD

6 Γ@aD
Γ@cD

à Collecting coloured expressions

Consider the following expression:

a2 + b2 − c2 − d2

Clearly, from a mathematical point of view a2 - d2  is a subexpression. However, because Mathematica has not printed

these parts of the expression together, there is no way to select, and hence colour this subexpression. The solution is to

use the RC (RedCoalesce), GC, and BC functions. These functions will force terms together thus:

a2 + b2 − c2 − d2 êê RC

b2 − c2 + Ia2 − d2M

Typically these functions are combined with one of the other colour manipulation functions, for example:

a2 + b2 − c2 − d2 êê RC êê RR1@FactorD
b2 − c2 + Ha − dL Ha + dL

Without coalescing the two red expressions Factor gets applied to them separately and achieves nothing.

a2 + b2 − c2 − d2 êê RR1@FactorD
a2 + b2 − c2 − d2

Although non  colour  preserving  versions  of  these  functions  exist,  they  are  not  often  used  because  in  many instances

(such as the above) without the colour the expression collapses to its original form.

Rather than merge two coloured expressions, it is sometimes useful to expand a coloured region to cover the immediate

containing expression. This can be done with the functions Rgrow, Ggrow, and Bgrow. Possibly the most application of

these functions is to colour negative components of additions. For example:

a − b êê FullForm

Plus@a, Times@−1, Red\[Breve]Colour@bDDD

a − b êê Rgrow êê FullForm

Plus@a, Red\[Breve]Colour@Times@−1, bDDD

Without this device there would be no way to pick out the subexpression (-b) as opposed to the subexpression b.

à Moving expressions 'out'

à Moving expressions 'in'

Although it is common to talk about moving expressions inside others, the concept can be rather more ambiguous than

the reverse operation. Colour Math supports several such operations to deal with the different cases. You can always use
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the reverse operation. Colour Math supports several such operations to deal with the different cases. You can always use

the most general form, which will work in all cases, if desired.

The simplest case is where the 'move in' operation is totally unambiguous, for example:

a b êê Rin

a b

Ha + bL c d êê Rin1

Ha c + b cL d

An intermediate case exists in which it suffices to mark two subexpressions with the same colour to specify a 'move in'

operation. For example:

Log@aD + Log@bD + Log@cD + Log@dD êê RRin1

Log@aD + Log@cD + Log@b dD

In the most general case it is necessary to use two distinct colours:

a + b Hc + dL e + f êê RBin1

Hc + dL HHa + bL e + Ha + bL fL

Here are a few more examples:

s ‚
i=0

∞

f@iD êê Rin

‚
i=0

∞

f@iD s

a b Ic2 + d2M êê Rin1

a Ib c2 + b d2M

à Moving expressions 'over'

The functions Rover, Gover, and Bover move subexpressions to the other side of equalities and inequalities. The precise

meaning depends on the context. Note that it is easy to do invalid things with inequalities - such as dividing both sides

by something negative -  so  it  is  vital  not  to  use these functions blindly. The  manipulation of  equalities  is  much safer.

Here are some examples:

x2 + y2 − a == 0 êê Bover

x2 + y2 	 a

Hx + yL
x − y

== p êê Rover êê Rin1

x + y 	 p Hx − yL
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a b + b c d == e êê Gover1

a + c d 	
e

b

à Multiply top and bottom by ...

Frequently  it  is  useful  to  manipulate  an  expression  by  adding  and  subtracting  the  same  term,  or  by  multiplying and

dividing the same term. The result is  unchanged of  course,  but the aim is  to combine this maneuver with other  opera-

tions  to  achieve  something useful.  You  will  encounter  two  problems  if  you  try  to  perform  such operations  with  'raw'

Mathematica:

• You may want to perform the manipulation deep inside an expression, not on the top level.

• Until you have performed some further operations Mathematica is quite likely to 'simplify' your expression back to its

original form.

To solve these problems a set of six operations are supplied which operate as in the following example:

f@a, bD êê Rmpy@2D êê Gadd@nD

fA−n + Ha + nL, 2 b

2
E

The  desired  operation  is  performed  inside  the  coloured  expression,  and  the  inverse  operation  is  applied  outside  the

colour  (so  that  the  value  of  the  expression,  disregarding  colour,  remains  the  same).  Since  the  result  would  at  once

collapse  if  the  colour  were  removed  before  other  transformations  were  applied,  no  non  colour  preserving  version  of

these functions is supplied.

Here is a more interesting example:

I1 + q + q2 + q3M I1 + q + q2M H1 + qL êê Rmpy@1 − qD êê Gmpy@1 − qD êê Bmpy@1 − qD êê
RR1@ExpandD êê GG1@ExpandD êê BB1@ExpandD

Notice how the coloured product or sum is ready for another colour manipulation operation, in this case Expand.

à Extracting expressions to another notebook

The philosophy of using coloured expressions is perform as much as possible without re-writing or pasting operations,

which do not leave any record in the notebook. However, sometimes it is convenient to extract part of an expression and

manipulate it on its own in a separate notebook, pasting the result back in at the end of the process.  If you do this you

must accept that your notebook will not contain a full record of your manipulations.

To extract a subexpression first colour it in the usual way and then press the large 'X' on the palette of the appropriate

colour.  Note that there are no functions corresponding to these palette items. A new notebook will be created with the

subexpression pasted into it. This notebook will also contain a button marked 'Return' which you should press to return

the last result that you produce. Do not press this button until you have evaluated an expression of some sort. 

When you press the 'Return' button the temporary notebook will close and the result will be pasted back into your full

expression.

à Functions with many parameters

Certain mathematical functions, such as the (generalised) hypergeometric functions and the MeijerG function depend on

many parameters, which are arranged in lists. Consider for example the function HypergeometricPFQ[{3/2,2},{1,2},z].

Here we have two lists of parameters,  and it  is a basic  fact – obvious from the definition of  these functions –  that the

order of parameters within each list is irrelevant. Suppose now that you wish to apply a transformation rule to a hypergeo-
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order of parameters within each list is irrelevant. Suppose now that you wish to apply a transformation rule to a hypergeo-

metric  function,  but  the  order  of  the  parameters  in  the  lists  does  not  match  those  in  the  rule.  Because  Mathematica

applies  transformation rules in an essentially blind way it  is  necessary to  sort  the order  of  parameters  before  applying

such  a  rule  (Alternatively  you  could  define  many  rules  to  cover  each  parameter  ordering,  but  this  quickly  becomes

unmanageable).

To handle such problems using colour, a set of functions are supplied to sort the order of parameters in lists by colour.

Lists are sorted into the order red, then green, then blue, then uncoloured expressions. For example:

F@8a, b, 1, 2<, 8d, e, f<, zD êê CS@D
F@82, b, a, 1<, 8d, e, f<, zD

As usual, the sorting operation can be followed by removing the colour. In this case all three colours are removed:

F@8a, b, 1, 2<, 8d, e, f<, zD êê CS1@D
F@82, b, a, 1<, 8d, e, f<, zD

Hint:  If  you  wish  to  manipulate  special  functions  such  as  hypergeometric  functions  you  may  find  it  useful  to  use  a

notation,  such  as  that  above,  which  is  not  recognised  by  Mathematica.  This  prevents  the  system  applying  spurious

'simplifications'  such  as  converting  hypergeometric  functions  to  Bessel  functions.  Later,  when  required,  the  rule  F-

>HypergeometricPFQ will switch to standard Mathematica notation if desired.

By  default  these  functions  sort  lists  only.  However,  sometimes  it  is  more  useful  to  apply  these  functions  in  a  more

general context by specifying the head of the term to be sorted. For example:

g@a, b, cD êê CS1@gD
g@b, a, cD

à A word of caution

As you probably realise, Mathematica does not automatically expand terms such as x2 . The reason for this is that if

x is negative or complex this is not valid. Many mathematical operations are only valid under certain conditions. Since

colour manipulations are designed for manual use, the system 'assumes' that you know what you are doing. Of course,

many of the traditional ways of manipulating Mathematica expressions using Take, Part, etc. do not make these checks

either. Here are some of the issues to watch for when using colour transformations:

• Operations involving exponents are performed under the same assumptions as are used by PowerExpand.

• Likewise, operations involving logarithms uses the transformation Log[a bDóLog[a] Log[b].  This  can be  invalid if

complex numbers are involved.

• If you select part of an expression by dragging the mouse (as opposed to repeated clicking) it is possible to select parts

of an expression which appear to be legal sub-expressions, but which are not. Here is a simple example:

a + b −c + d êê FullForm

Plus@a, d, Times@b, Red\[Breve]Colour@Times@−1, cDDDD

Here  the  legal  expression,  -c,  was  extracted  from  the  outer  expression  in  an  illegal  way  -  essentially  because  drag

selection  can  easily  be  used  to  select  invalid  sub-expressions.  The  best  way to  avoid  this  problem  is  to  select  using

repeated clicks (at least where confusion might exist) and use Rgrow etc. to pickup a minus sign:

a + b − c + d êê Rgrow êê FullForm

Plus@a, b, d, Red\[Breve]Colour@Times@−1, cDDD
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• Care should be taken when moving a multiplicative factor to the other side of an inequality. Negative multipliers can

give incorrect results.

à Adding your own extensions

Because  the  colour  functions  are  represented  in  the  Kernel  as  functions  with  no  definition,  it  is  easy  to  create  rules

which  use  colour  to  perform  an  operation  of  your  own.  For  example,  suppose  you  needed  to  perform  2-term  series

expansions on subexpressions regularly. You could try something like:

fAH1 + xL3, Exp@xDE êê RR1@u_ :> Normal@Series@u, 8x, 0, 2<DDD

fAH1 + xL3, 1 + x +
x2

2
E

However, this is very clumsy to use on a regular basis, so an alternative is to define a function to operate on the colour

directly:

RedExpand@u_D := u ê. RedÒColour@s_D :> Normal@Series@s, 8x, 0, 2<DD
Now you can use this function directly whenever it is needed simply by colouring one or more subexpressions red:

fAH1 + xL3, Exp@xDE êê RedExpand

fAH1 + xL3, 1 + x +
x2

2
E

à Defining inert mathematical operations

Consider the following summation:

‚
n=1

1000

an

If you give such a sum to Mathematica, it will 'evaluate' it - producing an expression with 1000 terms, which is almost

certainly not  what is  required!  Summations with infinite  or  variable  limits will  either  evaluate  or  remain unevaluated,

however there is no built-in way to represent a sum without letting the system take a shot at evaluating it. Clearly, there

are many cases, such as when one is trying to prove results about a sum, where one does not want this evaluation to even

be attempted. The same is true for definite integrals, products, and limits. To facilitate the manipulation of these objects,

the ColourMaths package contains inert variants of these constructs. These can be created by selecting the expression in

question and pressing the "Inert" button on the palette.

Active head Inert head

Integrate IntegrateÒInert
Sum SumÒInert

Product ProductÒInert
Limit LimitÒInert

All passive integrals and sums are assumed to be definite, indefinite integrals are converted to definite intert integrals by

the "Inert" button. An indefinite operation is specified by using a variable as the upper limit.

Inert  constructs  have  a  shaded  background  to  distinguish  them  from  normal  operations.  Where  inert  operations  are

nested inside other inert operations, this shading is made deeper.
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nested inside other inert operations, this shading is made deeper.

Clearly it would be possible to add further inert operations to this list, such as differentiation. As we will see in the next

section,  these  inert  operations  allow  us  to  represent  theorems  involving  sums,  integrals  etc.  (such  as  the  binomial

theorem) whereas if the sum in the binomial theorem were represented using Sum, Mathematica would simply apply the

binomial theorem and evaluate the sum! 

Although it would be possible to represent these objects using HoldForm (the invisible form of Hold), in practice this is

not very convenient as it suppresses other evaluations which may well be required. For example:

HoldForm@Sum@a@n, 8D, 8n, 0, 1000<DD ê. a@p_, q_D :> 2q b@pD ê; EvenQ@qD

‚
n=0

1000

28 b@nD

Compare this with the same operations performed with an inert sum and without HoldForm:

‚
n=0

1000

a@n, 8D ê. a@p_, q_D :> 2q b@pD ê; EvenQ@qD

‚
n=0

1000

256 b@nD

Somewhat curiously,  Sum and Product have attribute HoldAll, whereas Integrate and Limit do not. None of the passive

forms have  been  defined  to  hold  their  arguments -  it  is  assumed that  their  dummy arguments do  not  have  definitions

outside  of  the  construct.  Since  we  often  want  to  perform  extensive  manipulations  of  summations  it  is  convenient  to

allow evaluation to take place.

In general, nested sums, and integrals can have the order  of operations reversed subject to certain conditions regarding

uniform convergence. A function SwapOperations is supplied to achieve this on the inert forms:

‚
n=0

1

‡
0

1

fn@xD �x êê SwapOperations

‡
0

1

‚
n=0

1

fn@xD 
x

‡
0

1

‚
n=0

1

fn@xD �x êê SwapOperations

‚
n=0

1

‡
0

1

fn@xD 
x

Obviously  this  is  a  purely  mechanical  process,  it  could  not  even  begin  to  check  for  uniform  convergence,  since  in

general  it  would  not  'know' the  meaning of  many of  the  functions in  use.  The  user  must  add  this  to  his  derivation  if

required.

Two common hand manipulations of  integrals  is  to  change the  variable  of  integration or  to  perform an integration by

parts.  Here we see a variable substitution with a subsequent simplification of the integrand:

‡
0

1H1 − tL−1+q t−1+p �t êê Iv@s −> t ê H1 − tL, tD

‡
0

∞ I s

1+s
M−1+p I1 −

s

1+s
M−1+q

s

H1+sL J1− s

1+s
N2

+
1

1−
s

1+s


s
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‡
0

∞ I s

1+s
M−1+p I1 −

s

1+s
M−1+q

s

H1+sL J1− s

1+s
N2

+
1

1−
s

1+s

�s êê Simplify

‡
0

∞ I 1

1+s
Mq I s

1+s
Mp

s

s

The integration by parts operation assumes that the part to be integrated is picked out in red:

‡
a

b

xn Sin@xD �x êê ByParts

an Cos@aD − bn Cos@bD + ‡
a

b

n x−1+n Cos@xD 
x

One problem with inert  mathematical operations  such as  Integral  is  that  it  is  impossible  to  define  differentiation  with

respect to a parameter in a consistent way. Here is a simple definition assuming the limits are constants:

IntegrateÒInert ê: D@IntegrateÒInert@F_, 8x_, a_, b_<D, k_D :=

IntegrateÒInert@D@F, kD, 8x, a, b<D
Using this definition, we seem to be able to differentiate inert integrals:

DB‡
0

π

2
1 − k2 Sin@xD2 �x, kF

−‡
0

π

2
k Sin@xD2

1 − k2 Sin@xD2

x

However, if  the inert  integral  is embedded inside a  larger  expression,  things go wrong. It  would seem that  D uses the

chain rule a little too eagerly.

DBk ‡
0

π

2
1 − k2 Sin@xD2 �x, kF

‡
0

π

2

1 − k2 Sin@xD2 
x −
k2 π Sin@xD2

2 1 − k2 Sin@xD2

For this reason, the ColourMaths package supplies the Diff operation which fixes this problem.

DiffBk ‡
0

π

2
1 − k2 Sin@xD2 �x, kF

−k ‡
0

π

2
k Sin@xD2

1 − k2 Sin@xD2

x + ‡

0

π

2

1 − k2 Sin@xD2 
x

The  ColourMaths   package  also  contains  inert  forms for  several  common Special  functions and  related  mathematical

objects. In most cases these also have rules to display them in a traditional form from StandardForm. These functions do

not display well in TraditionalForm, but by switching them to the active Mathematica equivalent it is possible to obtain

an expression suitable for display in TraditionalForm. 

à The Adjust button – Visual algebra

Most of us are familiar with doing algebra in a linear fashion. The 'point and click' culture has  yet to make much impact
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Most of us are familiar with doing algebra in a linear fashion. The 'point and click' culture has  yet to make much impact

on this process. However,  The Adjust button offers a step in that direction! Simply select the part of an expression to be

manipulated, and press the Adjust button to see a menu of possible manipulations:

f@Ha + bL Ha^2 + 2 a b + b^2LD
Note  that  I  have  used  the  shading to  represent  the  selection  –  it  isn't  part  of  the  expression.  Here  is  what  the  system

offers at this point:

Accepting one or other of the two choices will not simply alter the expression (which would leave no indication of how

the  transformation  was  produced).  Instead,  it  annotates  the  expression,  so  that  the  desired  result  is  obtained  by

evaluation:

fAHa + bL Ia2 + 2 a b + b2ME êê RedÒColourAdjust@ApartÒAdjustD
fAa3 + 3 a2 b + 3 a b2 + b3E

This  illustrates  the  concept,  but  to  obtain  really  interesting  results,  we  need  to  supply  some  transformations  that  are

specific to our area of interest. For example:

DefineÒAdjustmentBBinomialÒTheorem,

H1 + x_Lp_ 
 ‚
k=0

∞

xk Binomial@p, kD, "Binomial theorem"F;

DefineÒAdjustment@BetaÒFunctionÒDefinition,
IntegrateÒInert@t_^Hp_ − 1L ∗ H1 − t_L^Hq_ − 1L, 8t_, 0, 1<D 
 Β@p, qD,
"Beta function definition"D;

The DefineÒAdjustment function takes an arbitrary transformation name (analogous to ApartÒAdjust above), which must
be unique, a transformation rule, and any additional comments. The last argument can be omitted.

Here  is  a  typical  use  of  these  definitions.  Select  the  shaded  part  of  the  expression,  and  press  the  Adjust  button.  You

should see the following::

‡
0

1H1 − tL−1−a+c t−1+a H1 − t zL−b �t
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This produces the following. As you can see, it is quite clear what step was chosen, and it could be re-executed at a later

date provided the above call to DefineÒAdjustment had been entered.

However, there is a complication here. The summation in the binomial expansion requires a dummy index – a problem

which is very common in really useful transformations. It is for this reason that the dummy index, k, was coloured with

the 'flag colour' when it was entered. The idea is that you fill in a suitable index to use thus:

‡
0

1H1 − tL−1−a+c t−1+a H1 − t zL−b �t êê RedÒColourAdjust@BinomialÒTheorem, k → �D

‡
0

1H1 − tL−1−a+c t−1+a H1 − t zL−b �t êê RedÒColourAdjust@BinomialÒTheorem, k → mD

‡
0

1H1 − tL−1−a+c t−1+a ‚
m=0

∞

H−t zLm Binomial@−b, mD 
t

Now we swap the integral and sum (deferring any convergence checks until later), and move things about.

‡
0

1H1 − tL−1−a+c t−1+a ‚
m=0

∞

H−t zLm Binomial@−b, mD �t êê SwapOperations êê Rout1

‚
m=0

∞

Binomial@−b, mD ‡
0

1H1 − tL−1−a+c t−1+a H−t zLm 
t

Now a few simple rearrangements leave the expression with a recognisable beta function integral

‚
m=0

∞

Binomial@−b, mD ‡
0

1H1 − tL−1−a+c t−1+a H−t zLm �t êê Gmpy@H−zL−mD

‚
m=0

∞

Binomial@−b, mD ‡
0

1H1 − tL−1−a+c t−1+a H−zLm HH−zL−m H−t zLmL 
t

‚
m=0

∞

Binomial@−b, mD ‡
0

1H1 − tL−1−a+c t−1+a H−zLm HH−zL−m H−t zLmL �t êê Rout1 êê

GG1@PowerExpandD

‚
m=0

∞

Binomial@−b, mD ‡
0

1H1 − tL−1−a+c t−1+a+m H−zLm �t êê Rout1
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‚
m=0

∞

H−zLm Binomial@−b, mD ‡
0

1H1 − tL−1−a+c t−1+a+m �t êê

RedÒColourAdjust@BetaÒFunctionÒDefinitionD

‚
m=0

∞

H−zLm Binomial@−b, mD Β@a + m, −a + cD

à Highlight Formulae

Most serious mathematical derivations number certain formulae so that these can be referred to at subsequent points in

the  text.  While  Mathematica  does  permit  equation  numbering,  it  supplies  no  way  to  actually  access  an  equation  by

number. Although it  would probably be possible to create  such a mechanism, another problem associated  with relying

on  equation  numbering,  is  that  inserting  an  extra  numbered  equation  into  a  notebook  will  cause  the  other  equation

numbers to change.

The ColourMaths package lets you highlight any cell and give it a name to identify it further down the notebook. This is

done by clicking anywhere in the cell, and pressing the “Highlight” button on the palette. For example:

"Atomic_hydrogen_ground_state"

EÒHydrogen �
�4 me mp

32 π2 —2 Ime + mpM ε0
2

Once this highlight formula has been named in this way, it can be refereed to thus:

GetÒHighlightÒFormula@"Atomic_hydrogen_ground_state"D

EÒHydrogen 	

�4 me mp

32 π2 —2 Ime + mpM ε0
2

Using the following extra definitions (which might typically be included in the initialisation section of a notebook), we

can access the formula in a more interesting way:

physicalConstants = 9
me −> 9.10938215`*^-31,

mp −> 1.672621637`*^-27,

ε0 −> 8.85419*^-12,

� −> 1.6021766*^-19,

— −> 1.0545717*^-34=;
GetÒHighlightÒFormula@"Atomic_hydrogen_ground_state"D ê. physicalConstants

EÒHydrogen 	 2.17868 × 10−18

If you prefer to number your equations, you can always give them a numerical name, e.g. “23” or “(23)” or “2.1.7” .

Highlight formulae can also be accessed from a menu using PickÒHighlightÒFormula:
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PickÒHighlightÒFormula@D

EÒHydrogen 	

�4 me mp

32 π2 —2 Ime + mpM ε0
2

Certain  other  functions,  such  as  LeftÒSide  and  RightÒSide  can  also  take  the  string  name  of  a  suitable  formula.  For
example:

RightÒSide@"Atomic_hydrogen_ground_state"D
�4 me mp

32 π2 —2 Ime + mpM ε0
2

Note that these functions access the highlight formulae from the notebook,not from the kernel. This means that provided

the ColourMaths package is loaded, it is not necessary to re-execute a notebook to pick up these formulae.

à Future enhancements

Clearly the  concept  of  using Mathematica  in  this  way could  be  expanded  in  many directions,  with specialised  sets  of

transformation rules, etc being added as required.
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